Microenvironment-dependent cues trigger miRNA-regulated feedback loop to facilitate the EMT/MET switch.

نویسندگان

  • Julienne L Carstens
  • Sara Lovisa
  • Raghu Kalluri
چکیده

The metastatic spread of tumor epithelial cells accounts for over 90% of cancer-specific mortality; however, the molecular mechanisms that govern tumor spread and distant recolonization remain unclear. In this issue of JCI, Rokavec and colleagues shine light on this murky aspect of tumor biology by focusing through the lens of microenvironmental contributions, namely inflammation, as driving signals that set off a delicate, intracellular feedback loop among cytokine receptors, transcription factors and miRNAs. This study provides in vivo evidence and identifies molecular players behind the elusive switch that drives the epithelial-to-mesenchymal transition and the mesenchymal-to-epithelial transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Network Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal Transition

BACKGROUND The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic pro...

متن کامل

miRNAs, Melanoma and Microenvironment: An Intricate Network

miRNAs are central players in cancer biology and they play a pivotal role in mediating the network communication between tumor cells and their microenvironment. In melanoma, miRNAs can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the EMT process, even at a ...

متن کامل

Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to Epithelial Transition in Human Cancer

Cell plasticity regulated by the balance between the mesenchymal to epithelial transition (MET) and the opposite program, EMT, is critical in the metastatic cascade. Several transcription factors (TFs) are known to regulate EMT, though the mechanisms of MET remain unclear. We demonstrate a novel function of two TFs, OVOL1 and OVOL2, as critical inducers of MET in human cancers. Our findings ind...

متن کامل

Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition.

Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through determin...

متن کامل

Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions

Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 4  شماره 

صفحات  -

تاریخ انتشار 2014